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Coincidence technique for vacuum ultraviolet photoelectron
spectroscopy of neutral clusters in a molecular beam

FIG. 1. Schematic drawing (side view cross section) of the molecular
beam apparatus and the monochromatized vacuum UY light source. Two
conically shaped stainless steel skimmers (S) are used to collimate the
cluster beam. The skimmer apex orifices are usually between 1 and 2 mm
in diameter, the skimmer height 25 mm, and the skimmer exit orifice
diameter 15 mm. The oven can be used to vaporize materials at temper-
atures up to 1200 K. The maximum throughput for noncondensing gases
is 20 mbar | s~ . The expansion chamber (EC), the differential pumping
stage (DPS), the ionization chamber (IC), the vacuum UV monochro-
mator (VUV-M, ACTON Research YMM302), and (he mirror chamber
(MC) are evacuated by oil diffusion pumps. The working pressure under
typical operation conditions is better than 10~ * mbar (EC), 10~ * mbar
(DPS), and 10~ * mbar (IC,MC,VUV-M).
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K. Rademann, T. Rech, B. Kaiser, U. Even, F. Hensel, Rev. Sci. Instrum. 62, 1932 (1991).

N AT
! i a
MC |

—_— i

|
K
J 3

eryo

trap




ignization
voliime |

L

+14 KV
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FI1G. 2. Schematic drawing (top view eross section} of the electron-cation
coincidence spectrometer. The collimated cluster beam is lonized by a
short UV-light pulse {start pulse for flight time measurements) on the
symmetry axis of both spectrometers. The ionization process oceurs in an
electrostatic field-free region between both spectrometers. Particle densi-
ties in the jonization volume are on the arder of 10" em =% the intensity
of a single, monochromatized VUV light pulse (bandwidth 2 nm) is
typically 107 photons, Single photoelectrons are energy analyzed by mea-
suring their flight time in a magnetic mirror electron spectrometer. The
elecirostatic field free region of this spectrometer is separated from the
detector region by a single, high transmission (8596} Ni mesh., A photo-
electron passing this mesh is accelerated up to kinetic energies of about 14
keV. If this electron penetrates an aluminum covered plastic seintillator
{BICRON 418}, a short light pulse will be generated and detected by a
photomuttiphier { PM: HAMAMATSU R329), which is optically coupled
to the scintillator by a plexiglass light guide. The output of this photo-
multiplier serves as a stop pulse for electron flight time measurements.
This stop pulse is also used to activate a high voltage switch { — 300 V;
Behlke HTSS1) For several ps. Single cluster cations {belonging to the
electron that has already been detected ) will be drawn out of the ioniza-
tion region and accelerated up to kinetic energies of about 2 ke, Clusters
undergo mass separation in a 180-mm-long field free drift tube. Detection
of single ons is accomplished by a modified Daly detector equipped with
an aluminum conversion dynode, a plastic scintillator (BICRON 418),
and a 800 ps rise time photomultiplier (PM: HAMAMATSU R 1635/02

‘5 in.}. Mass resolution m/dm can be as high as 350,
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n = 3—250 taken with 7.9 ¢V laser excitation. The spectra are
scaled and truncated to show a constant intensity of the single
peak of the detached 6p electron. The fine structure of the 6p
peaks is due to statistical scatter of photoelectron counts.

FIG. 2. Photoelectron spectra of Hg , in the size range of 7J\<‘/£E7 - X Q —’/% /r F D
\
J

n
AN
PN o~ o
5 Q\ P
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T\ 4
S
9 o~ |
L o S 3
3 1 o\ 2
2 12\ A w =2
2
3 13\ ~
2 14\ N
5 15\ N 1 1
"E': 20 \ .
S 25 \ "
E 30 \ o
% 35 k N
£ 4s PN
= 55\ |"|_1'r'3
63 \ .
80\ o FIG. 3. The size dependence of the BEs of the 6y HOMO
100 \ . (open circles) and the 6p (full circles) electrons in the PES of
120 \ Hg . The s-p band gap is the difference between these val-
140 | ues (open triangles). The linear fitting of the band gap, in the
180 \._ size range n = 50250, extrapolates to zero at n = 400 * 30,
250  \,
7 5 5 4 > 1

1‘1 2 1 ]
Binding Energy (eV) Cheshnovsky et al., Phys. Rev. Lett., 81, 3936 (1998).



Magnetic time-of-flight photoelectron spectrometer
for mass-selected negative cluster ions

Fig. 1. Horizontal cross section of the photoelectron specirometer: 1.
Pulsed mass gate. 2. Pulsed decelerator. 3. Water-cooled pulsed solenoid. 4.
Laser interaction zone. The laser beam and the baffle arms are perpendicu-
lar to the page. 3. In-line dual microchannel-plate ion detector. 6. Photo-
electron flight tabe, 234 cm long. 7. Low field guiding solencid. 8. mu metal
shielding, 9. Cryngenic pump. Mote ihat both of the solenocids are outside of

R _,_,_..l the vacuum chamber.
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O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, R. E. Smalley, Rev. Sci. Instrum. 58, 2131 (1987)
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Fi1G. 2. An expanded view of the main parts of the photoelectron spectrom-
eter. Superimposed are the magnetic ficlé lines generated by the two sole-
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Abundance spectra of copper and silver clusters
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FIG. 15, Alkali abundance speciss: ah sodi-
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Ionization potentials of alkali clusters
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FIG. 1. Sodium cluster abundance spectrum:
fa) experimental (after Knight et al,, 1984} (b)
dashed line, using Woods-Saxon potential
{after Kmight er af,, 19584); solid line, using the
ellipsoidal shell (Clemenger-Nilsson} model
{after de Heer, Knight, Chow, and Cohen,
1987),



Energy level occupations of spherical jellium model
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FIG. 2. Encrgy-level occupations for spherical  three-

dimensional, harmonic, intermediate, and square-well poten-
tials. After Mayer and Jensen, 1955,
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FIG. 3. Self-consistent effective potential of jellium sphere cor-
responding to Nag, with the electron occupation of the energy
levels, After Chou ef al., 1984,



Cluster shapes according to ellipsoidal shell model

(a) (b)

FIG. 4. Cluster shapes (a) according to the ellipsoidal shell model (Clemenger-Nilsson), normalized to the constant volume; (b} from
ab initio quantum-chemical caleulations by Bonacic-Koutecky et al. (1988]. The midshell change from prolate to oblate predicted in
the CN model is also scen in the shapes from ab inirio caleulations,
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Single-particle energy levels as a function of anharmonic parameter

. (v, 1) FIG. 52. Singl icl level
‘1G. 52, Single-particle energy levels as a
g 129 200 .-""f — e —E'I:!d function of the anharmonic distortion parame-
274 / ter !, I'=0 corresponds to the harmonic os-
2 Zh cillator; for positive values of U, the curvature
A 220 | ap of the bottom of the well is reduced as indicat-
" 1351951 2 ed. The wmit of energy is approximately
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Appendix; Ellipsoidal shell model

Hence the effective single-particle Hamiltonian for
electrons with mass m 1s

) p? N mawiq’
2m 2

H = —Uhag[1*—nin+3)/6], (Al

The spherical shell model predicts an energy eigenvalue
spcctrum

E,=hesiin +2)—U[1*—n(n +3)/6]} . (A3)

The basic assumption of the Clemenger-Nilsson (CN)
model {(Clemenger, 1985; de Heer, Knight, er al., 1987),
a5 in the MWilsson (1955) model, is that for fixed volume
the cluster shape adjusts to minimize the total electronic
energy. Ignoring the anharmonic term [i.e., U=0, Eq.
[(A2)] gives the eigenvalues as a function of the shape,

E(n_n,n )=hay|(n +1)R0 i 4y Bo
tlys : S TR
B *UR, TR,
Ry
+(m,+ L) : (A4)
Fd RE

where R,, R,, and R_ are the semiaxes of the ellipsoid,
and ng . n., and n, are the harmonic-oscillator guantum

numbers [i.e., for the s state, (n,,n,,n.)=00,0,0); for
the 1p, they are (1,000, 10,10}, and (00,1} for the n=2
corresponding to the 1d, 25 levels, they are (2,0,0], {0,2,0],
(0,0,2), (1,1,00, (0,1,1), ete.]. The volume is constrained by
R,R.R,=R,.

If the shapes are further constrained to spheroids
(R,=R_), then the single-particle energy levels can be
expressed in terms of the distortion parameter

R,—R,

N=d———"", (A3)
R,.+R,

The total electronic energy can be expressed in terms
of the single-particle energies. For the harmonic single-
particle potential it can easily be shown that the total
electronic energy is related to the sum of the single-
particle energies (see, for example, Preston and Bhaduri,
1975, p. 421 ):

E qgN=1ZE(gn,,n,n,l. A6

The resulting total electronic energy curve has a
minimum at (N} and 15 indicated by a dot at the
highest oceupied level in the CN diagram. By this pro-
cedure we find that the closed-shell clusters, i.e.,
2,8.20, . .., are spherical {n=0) and that open-shell clus-
ters are cither oblate or prolate spheroids. An interesting
exception (there are many others] is 34, which in the CN
model is ellipsoidal and a subshell closing rather than a
spherical shell closing., In addition, 18 is spheroidal
when =10, but spherical for /= 0.02.
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FIG. 53, Clemenger-Nilsson diagram (after
Clemenger, 1983k Cluster numbers are posi-
tioned at the highest occupied levels and at the
equilibrium configuration 7, For a detailed
description, see the text.
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Abundance spectra of copper and silver clusters
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FIG. 15, Alkali abundance speciss: ah sodi-
am abundance speclriam i Fig. 1) preseivi-
mil with a Inparithmie wesle, (Bl polassinm
ahundance spestrum  lafter Knight & af,
1984). Spherical-shell-closing numbers are in-
dicated.
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FIG. 17. Logarithmic abundance spectra aof (a)
capper and [B) silver cluster ions produoced in a
sputiering source. Mumhbers correspond  bo
spherical shell closings afrer Katakuse o af,,
1944,



Evolution to bulk crystal structure
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FIG, 21, Mass specirum of sodium clusters photoionized with
#00- amd 410-nm Eght. Two seqguences of structures are oh
servedd at equally spaced intervals on the N wrale after Martin
el 1990, 19%0b; Mariin, Bergmann, and Mallnowsk, 1950

I:'_-}u:ui_ng much further than this, sodiom mass spectra
have boen recorded uwp to N =25000 by Martin er o/,
(1900, 19906; Martin, Bergmann, and Mallnowsks, 19590;
Martin er al., 1991b) using a gas-aggregation source and
laser ionization. Portions of the spectrum, for which two
different laser-light wavelengths were used, are shown in
Fig. 21. In this case the structure is brought out by using
light very close to the ionization threshold, so that the
shell structure manifests itsell as minima in the mass
spectra, since closed-shell clusters have relatively larger
ipmization potentials, Two  series of numbers  are
identified: 340, 440, 560, T00, 840, 1040, 1220, and 1430,
which are spaced as the spherical shell-closing numbers,
nnd & second series for larger clusters, 1980, 2330, 5070,
and 6330, which is continued with 3170, 10200, 12 500,
P53 100, 18000, and 21 300, from other spectra, closely
following the algoritlm

N=LI0K"— 15K+ 11K —3) . (4.4}

These are not elecironic r_.hi:l]-n:.lm:ing numbers, bot
rather the numbers corresponding to Mackay icosahedra
which mre geometrically compact sirectures analyzed by
Minckay, 1962) with & shells of atoms., These resulis for
soddium indicate that at low temperatures the fine strue-
ture from electromic shell structure becomes bess impsor-

tunt compared to geometrical shell sirocture for sdzes
mear &= I,
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Ionization potentials of alkali clusters
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FIG. 6. Tonization potentinls of alkali cluscers. {al Ionization potentiols of sodium clusters (after Homer e al, 1993, to be pub-
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FlG, 27, lomization p-m:nlhla aof trivalent
clasters, (ab lonlzatlon potentials of aluminum
clasters (aler  Schriver e ol 19905
Spherical-sholl-closing numbers predicied lor
this trivalent metal are shown, (b)) Lonisation
potentials of indium clusters lafter Pellarin
e al., 1997, 1993),




Semiclassical conducting-sphere model

A sim ple model for the ionization potentinl is to treat
the cluster as o clussical conducting sphere. In this mod-
gl there are two contributions 1o the energy needed to re-
move an slestron; one is the binding snergy of the clee-
tron in the metal, i.e., the work function, and the other is
the electrostatic contribution, which reflects the electro-
satic energy of a small charged system in the ionized
state. The electrostatic :-::-ntrihgﬁm is found from ele-
mentary consaderations and is ¢“ /2R, where B is the ra-
diuws of the sphere; in the infinite Hmit, the ionization -
tential approgches the work function. Hence the
senducling-sphure masdal gives for the ionization poten
tial and the electron affinity (EA,

IP=WF+ael/R
EA=WF=SerR ,

(6. 1)

where WF is the polyerystalline bulk work function and
a=F=1 in the classical model (Makov et al., 1988; Per-
dew, 1988, de Heer and Milani, 1990, MNote that Eqg,
(6.1) 1w most essily derived by poouming a smeall bod
noneero radivs for the classical electron and identifying
the ionmization potential thus derived for infinite B with
the work Fanction {de Heer and BMiland, 19901

lonization potential {e\)

=]

4]

lonization polentsal eV}
B

i

0 1 2 4 4 & & T @8 &8 10
g2 /R (a\V)

Fl1G, 28, Experimental ionization patentials () for Ma, K, asd
Al clusters photted against e /R, where B iz the classion] eluster
radiug, Lines are parabolic fits to the clossd-shell clusters amd
the bulk work funciiom. The fit parameters ore given in the
fext, (bl For lithiom clusters. plotted as in dal.
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Photoelectron spectra of potassium cluster anions
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FlG, 33, Sysdtematics of electron binding energies: (a) Experi
menial photoelectron peaks from Figs. 31 and 32, For M= 13
the peaks merge inte two bands, Solid lines betwe=n clusters
follow the measured peaks; vertical lines mdicate the bamds, B
Calealsted highest occupiesd orbitals from the ellipsoidal shell
(Clemenger-Milson) model; note the correspondence to la) lsee
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Electron affinities
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trams do ot Lines correspond o parabalic fits; the ftting pa-
ramslers ane given in Lhe text. The fwo paints for the 3d elec-
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FIG. 3. Photoeleciron spectra of copper anionic clusten
[ods indicate the positions of the highest levels correspondin
to the two bands. The spectrum of Cuy,, closely resembles th
Bulk. After Chesnovsky e af, 1990,
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ramElErs are given in the text.
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Jahn-Teller effect in alkali trimers

LtB”

Flfy. 3% Firstorder Born-Oppenheimer sorfacs for alkali tri-
meers, showing the Jahn-Teller effect Oower drawing), LUpper
drawing shows the trimer configuration in real space, where the
cirgles ateowt the equilaternl triangle (dashed line) configuration
correspomd  to the bottom of the “moat™ of the Born-
Oppenheimer surface. Hence the atoms are free o precess m
unaeniy Ipssudorotate) nboat the equilateral confipuration. In
ligher order the Barn-Oppenheimer surfoce develops three
svmmetracally pesitsoned wells in the moat.
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Resonant two-photon ionization spectrum of Na, (bottom), and expanded spectrum
in 600-625-nm region with pseudorotation-state labels j (top).
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Surface plasma
resonance in metal
clusters

Following de Heer, Selby, e @, (19871, we use the
Dirude model (Asheroft and Mermin, 1975 as a starting
paint for the dynamic polarizabilities of very small metal
spheres. Applyving a uniform electric field induces a di-
pade, which in this approximation is described as a small
uniform displacement of the electromic clond o caneel
the internal eleciric fields. In the static limit this dis-
placement 5 & =ak, where & is the polarizahility (Sec.
IV The model 15 easily extended for oscillating fields
and, among other things, predicts a resonance at oy, :

z =._E= _ MNet

e v MR (5.3
where (* and M, are the total charge and mass of the
valenes elegtrons, M| the atemis mass, B the ¢luster ra-
dius (see below), and ¢ 15 assumed to be independent of
the lreguency. The right-hand expression is valid for
monaval et metals. For brevity this collective excitation
will be called the surface plasmon, conforming with
CUrrenl wsage.

If the slapteenic motion = resistively domped moone
way or anather, then the surface plasmon energy 1% dissa-
pated in the cluster, leading to a broadening of the reso-

| nance, Assuming that the collective mode accounts for

all the dipole oscillator strength of the cluster din foact,

| this is already implicit in the derivation of o abovel, we

can give the photopbsorption cross section by
_aariye? a

e (wf—wl P HielP

(8.4

where A 15 the number of electrons amd m, the electiron
MRSS.,

FIG. 4. Photoabsorption cross sections of silver closter iomns:
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FlG., 43, Photeabsorplion cross sectons of soulium clusters
talter Selfby & all, 1991), Conlimuouws corves are caloulated os-
ing the basic model.

(a) and (ch are chosed-shell clusters and hove single peaks; (bl the
open-shell Ag has two peaks, os predicted in the ellipscidal
shell IClemenger-Milmon) model. Solid lines are fits bo the data.
After Tiggesbiumker & al.. 1992,
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Collective motion of electrons induced by electric field
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I,- Photodissociation and
Recombination Dynamics
in Size-Selected 1,(CO,), and
L,7(OCS), Cluster Ions

W. C. Lineberger

J. Phys. Chem., 95, 8028 (1991).

J. Chem.Phys., 99, 8733 (1993).
Phys. Chem. Comm., 5, 165 (2002).









Experimental setup

Cluster lon Source and
Tandem Time of Flicht Mass Spectrometer

Pulzed Valve
Fulzed Lazer
200 fs - fns

1m] 20 H:

10 psec
"Ilass Gate"
L~ .//

F.eflectron

0w
-1 kW

[otrneutral
Dretector

Ldictochatnel Plate
Ion Detector

cwhiode Locked

Real Time N Mad:¥aG Laser 30ps

Awtor orrelator Synchpumped  —k
Ti0nm dyelaser

1 ps=
Hnl Pulze Compreszor

|30
ESTIIEL A Hz 00 ml

| | Purnp Laser

Cptical D elasy
Line

1 1mJ

Half wawe plate
Power Ion Beam

i *— Dietector
[ —4 3

Z

Slow Soan
Sntocorrelator



Potential energy curves for I,
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Photofragmentation

Mass Spectra for 1,7(CO,), o
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Figure 4. Absolute I,” photodestruction cross section, The error limits
represent one standard deviation statistical fluctuation on the mean. The
uncertainty in the absolute cross section is a factor of 2. The vertical
arrow indicates the wavelength (720 nm) at which cross-section mea-
surements for [,7(CO,), cluster ions were performed. See text for details.
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Figure 6. Photofragmentation mass spectra for representative precursor
ions: I,7(COy)s, 1;7(CO;)g, and I;7(CO,) 6. The low mass distribution
represents the photofragments observed following the absorption of a
720-nm photon. The relative intensities of the photofragment ions are
drawn to scale; however, the intensity of the precursor ion is not.
Cross-hatched bars represent parent ions, open bars represent uncaged
photofragment ions, and filled bars represent caged photofragra¢nt ‘ons.



Schematic of Sequential two-Photon Mechanism
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Figure 9. Effects of laser power on the photofragment ion distribution
for I;7(CO,) 1. At low laser powers, only one-photon photofragment ions
are observed, while at higher laser powers, both one- and two-photon
photofragment ions are observed as shown. Cross-hatched bars represent
parent ions, open bars represent uncaged photofragment ions, and filled
bars represent caged photofragment ions.
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Figure 10. Schematic representation of the sequential two-photon ab-
sorption mechanism. After absorption of the first photon, the CO, cluster
can induce recombination of the dissociating I,” onto the ground-state
potential energy curves. The resuiting highly vibrationally excited I,”
partially relaxes after which it can absorb a second photon.
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Absorption Recovery Data
Caging and Recombination
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FIG. 6. 17 (CO,), (n=14-17) absorption recovery data obtaired with
720 nm pump and probe pulses with parallel polarization.
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FIG. 8. Absorption recoveries for {(a) I;7(CO;) 6 and (b) I; (CO;) 4,
obtained with perpendicular polarizations (open circles). These absorp-
tion recovery curves are superimposed on the parallel polarization data
(solid circles) reproduced from Figs. § and 6.






Absorption Recovery Time
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FIG. 10. Expanded view of the I; (CQO,}, absorption recavery obtained
using the femtosecond laser apparatus. Superimposed on the data is the
parallel absorption recovery obtained using the picosecond laser system
and a typical autocorrelation trace of the amplified femtosecond laser
pulse. Unlike the picosecond data, the femtosecond data have not been

smoothed.
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FIG. 12. Absorption recovery time displayed as a function of cluster ion
size. The absorption recovery time is defined as the pump-probe delay
time at which the parallel absorption recovery (Figs. 5 and 6) reaches
80% of its asymptotic value,



Two-Photon Photofragment Distibution for Various Delay Time
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